Is a Linear Relationship between the Free Energies of Activation and One-Electron Oxidation Potential Evidence for One-Electron Transfer Being Rate Determining? Intermediates in the Epoxidation of Alkenes by Cytochrome P-450 Models. 4. Epoxidation of a Series of Alkenes by Oxo(meso-tetrakis(2,6-dibromophenyl)porphinato)chromium(V)

J. Mark Garrison, Dražen Ostović, and Thomas C. Bruice*
Contribution from the Department of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106. Received November 18, 1988

Abstract

The mechanism of reaction of (porphyrin) $\mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ with alkenes has been investigated by combining the electrochemical determinations of redox potentials with the tools of kinetics and product identification. Studies include the following: (i) the dynamics of the reaction of oxo(meso-tetrakis(2,6 -dibromopheny) porphinato)chromium $(\mathrm{V})\left(\left(\mathrm{Br}_{8} \mathrm{TPP}^{2}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})\right.$) with 16 alkenes (1,4-diphenyl-1,3-butadiene, 4 -methoxystyrene, 1,1 -diphenylethylene, 4 -methylstyrene, 2,3 -dimethyl- 2 -butene, cis-stilbene, styrene, 4 -acetoxystyrene, cyclohexene, norbornene, cis-cyclooctene, 4 -cyanostyrene, cis-2-pentene, cyclopentene, 1 -hexene, 1 -octene); (iii) the dynamics of the reaction of norbornene with five (porphyrin) $\mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ species (oxo(mesotetraphenylporphinato)chromium (V), oxo(meso-tetrakis($2,4,6$-trimethylphenyl) porphinato) chromium $(\mathrm{V}$), oxo((eso-tetra-kis(2,6-dichlorophenyl)porphinato)chromium(V), oxo(meso-tetrakis(2,6-difluorophenyl)porphinato)chromium(V), and oxo-(meso-tetrakis(2,6 -dibromophenyl)porphinato)chromium(V)). Alkenes were selected on the basis of their le oxidation potential so as to cover the widest range of $E_{1 / 2}$ possible (1.14-2.80 $\mathrm{V}(\mathrm{SCE})$), and the le oxidation potentials for the (porphyrin) $\mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ varied from 0.790 to $0.975 \mathrm{~V}(\mathrm{SCE})$. Standard solutions of (porphyrin) $\mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ were obtained by controlled-potential bulk electrolysis of the corresponding (porphyrin) $\mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$ and used in the kinetic $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solvent, $30^{\circ} \mathrm{C}$) and product studies. The time course for the change in concentration of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X}),\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{2} \mathrm{~V}(\mathrm{O})$, and $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{111}(\mathrm{X})$ was simulated for the reaction of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})$ with selected alkenes possessing "low, medium, and high" oxidation potentials. The time dependence of $\left[\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})\right],\left[\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})\right]$ and $\left[\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{111}(\mathrm{X})\right]$ as well as the [alkene oxidation products] could be accurately fit to a scheme involving the following: (i) bimolecular reaction of alkene with ($\left.\mathrm{Br}_{8} \mathrm{TPP}^{\mathrm{P}}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ to provide alkene oxidation product $+\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{111}(\mathrm{X})$; (ii) reversible comproportionation of $\left(\mathrm{Br}_{8} \mathrm{TPP}^{1}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})+\left(\mathrm{Br}_{8} \mathrm{~T}-\right.$ $\mathrm{PP}) \mathrm{Cr}^{111}(\mathrm{X})$ to provide $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})+\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{X})_{2}$; (iii) a spontaneous reversion (due to oxidation of solvent or solutes) of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ to $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{18}(\mathrm{O})$. The remainder of the alkene oxidations were followed by the more simplistic procedure of following the disappearance of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$. The second-order rate constants (k_{1}) determined by either method were found to be in agreement. For about half the alkenes studied, the standard free energies for le oxidation by $\left(\mathrm{Br}_{8} \mathrm{PPP}\right) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$, to provide alkene-derived π cation radicals (calculated from the potentials for le reduction of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$ and le oxidation of the alkenes to π cation radicals), exceed the free energies of activation for epoxidation of alkenes by $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$. A unified mechanism of epoxidation involving rate-determining formation of alkene-derived π-cation-radical intermediate is deemed unlikely. The slopes of linear plots of $\log k_{1}$ values vs $E_{1 / 2}$ when norbornene was the substrate with a series of (porphyrin) $\mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})$ oxidants (slope $=9.1 \mathrm{~V}^{-1}$) and when $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})$ was the oxidant with a series of alkenes (slope $=-3 \mathrm{~V}^{-1}$) are in accord with rate-determining formation of a charge-transfer (CT) complex. The CT complex may then break down in non-rate-determining steps to directly form epoxide + chromium(III) species, to yield a $\mathrm{Cr}^{111}-\mathrm{O}-\mathrm{C}^{+} \mathrm{C}^{+}$carbocation or, for those alkenes with $E_{1} / 2$ less positive than ca. 1.7 V (SCE), an alkene-derived π cation radical and a chromium(IV) species. For the epoxidations with $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\nu}(\mathrm{O})(\mathrm{X})$, there exists a linear free-energy relationship of $\log k_{1}$ and σ^{+}(i.e., $E_{1 / 2}$ is a linear function of σ^{+}). The value of ρ^{+}for the epoxidation of substituted styrenes (-1.9) by $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$ when compared to literature values supports a transition state with little carbocation character, which is in accord with the developing charge transfer in the critical transition state.

The ability to determine the second-order rate constants for the epoxidation of alkenes by following the direct reaction of oxochromium (V) porphyrin and alkene along with the availability of the le redox potentials of reactants provides a unique opportunity to probe the mechanism of the epoxidation reaction. ${ }^{1}$ In particular, one may decide if a discreet alkene-derived π cation radical may serve as an intermediate in a unifying mechanism for epoxidation. We have now determined the second-order rate constants for the following: (1) the reaction of oxo(meso-tetraphenylporphinato)chromium(V), oxo(meso-tetrakis($2,4,6$-trimethylpheny) porphinato)chromium (V), oxo(meso-tetrakis (2,6 dichlorophenyl)porphinato)chromium(V), oxo(meso-tetrakis-(2,6-difluorophenyl) porphinato)chromium (V), and oxo(meso-tetrakis(2,6-dibromophenyl)porphinato)chromium(V) with norbornene; (2) the reaction of oxo(meso-tetrakis(2,6-dibromo-

[^0]phenyl)porphinato)chromium(V) with 1,4-diphenyl-1,3-butadiene, 4-methoxystyrene, 1,1 -diphenylethylene, 4 -methylstyrene, 2,3-dimethyl-2-butene, cis-stilbene, styrene, 4 -acetoxystyrene, cyclohexene, norbornene, cis-cyclooctene, 4-cyanostyrene, cis-2pentene, cyclopentene, 1 -hexene, and 1-octene. The reversible le potentials for the couples (Porph) $\mathrm{Cr}^{1 \mathrm{v}}(\mathrm{O}) /(\mathrm{Porph}) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$ vary from 0.790 to 0.975 V (SCE) and the potentials for the couples alkene/alkene π cation radical range from 1.14 to 2.80 V (SCE). From kinetic and thermodynamic constants we conclude that the rate-determining step in alkene epoxidation by (Porph) $\mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})$ involves the formation of a complex of reactants with a small degree of charge transfer.

Experimental Section

Materials. The solvent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was purified as described previously. ${ }^{1}$ Tetrabutylammonium perchlorate (TBAP) and iodobenzene diacetate (IBDA) were purchased from Aldrich and used as received. (IBDA was stored at $4^{\circ} \mathrm{C}$.) All alkenes were purchased from commercial vendors.

Figure 1. Cyclic voltammogram of $\left(\operatorname{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{IV}}(\mathrm{O})\left(1.0 \times 10^{-3} \mathrm{M}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ taken with a glassy-carbon electrode vs $\mathrm{Ag} / \mathrm{AgCl}$ reference (0.0 V vs SCE) electrode. Conditions: $0.01 \mathrm{M} \mathrm{TBAP;} \pm \mathrm{Lim}$: $0.0-1.5 \mathrm{~V}$; scan rate, $100 \mathrm{mV} / \mathrm{s} . \quad E_{1 / 2}=0.880 \mathrm{~V}$.

Norbornene, cis-stilbene, cyclohexene, and cis-cyclooctene were purified as previously described. ${ }^{1}$ All other alkenes and epoxide standards were purified by column chromatography and vacuum transfer or recrystallization. meso-Tetrakis(2,6-dibromophenyl) porphine (1) was synthesized as recently reported. ${ }^{2}$ Meso-(Tetrakis(2,6-dibromophenyl)porphinato) chromium(III) chloride (2) was prepared by metalation of the free base (1) ($100 \mathrm{mg}, 0.08 \mathrm{mmol}$) with chromium(II) chloride (five $1-\mathrm{g}$ portions) in a refluxing mixture of DMF/toluene (4/1). After addition of CrCl_{2}, the solvent was slowly distilled off to near dryness. The resulting products were taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the insoluble chromium salts were removed by filtration, and the mixture was column chromatographed on neutral alumina (activity $I I I^{1} / 2$). The unreacted 1 was eluted first with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by elution of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{111}(\mathrm{Cl})(2)$, as a green band, with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /methanol (96/4). Purification of 2 was accomplished by oxidation with IBDA to give $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 V}(\mathrm{O})$ (3), which was chromatographed (vide infra) and converted back to pure 2 by reaction with methanolic $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Visible spectrum of $2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ [$\lambda_{\max }$, nm $\left.(\log \epsilon)\right]$: 366 (4.28), 393 (4.44), 449 (5.21), 564 (3.95), 599 (3.72). Oxo(meso-tetrakis(2,6-dibromophenyl)porphinato)chromium(IV) (3) was prepared by treatment of 2 with IBDA (3-fold excess) in reagent-grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5-10 \mathrm{~mL})$. After a $15-\mathrm{min}$ period, the solution was chromatographed on basic alumina (activity V) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$ (3), which eluted as a red band, was collected, evaporated to dryness, and recrystallized from benzene/pentane to obtain deep purple crystals (21.3 mg ; 20.2% yield based on 1). Visible spectrum of $3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ [$\lambda_{\text {max }}, \mathrm{nm}$ (log є)]: 375 (4.26), 431 (5.08), 549 (3.98), 582 (3.65).

Instrumentation. UV-vis spectral measurements and repetitive scan experiments were carried out using the same equipment reported earlier. ${ }^{1}$

Electrochemistry. Cyclic voltammetry and controlled-potential bulk electrolysis were carried out as previously reported ${ }^{1}$ with [$\left(\mathrm{Br}_{8}\right.$ TPP)$\left.\mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})\right]=1.0 \times 10^{-3} \mathrm{M} ;[\mathrm{TBAP}]=0.10 \mathrm{M}$; solvent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25^{\circ} \mathrm{C}\right)$;

[^1]

Figure 2. UV-vis spectra of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X}),\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$, and $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{111}(\mathrm{Cl})$ (extinction coefficient vs nm).

Figure 3. Repetitive scan of the reaction of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})(1.15$ $\left.\times 10^{-5} \mathrm{M}\right)$ with norbornene $\left(6.0 \times 10^{-2} \mathrm{M}\right)$ at $30^{\circ} \mathrm{C}$. Spectral changes of the $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})(409 \mathrm{~nm}),\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(431 \mathrm{~nm})$, and $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{111}(\mathrm{Cl})(451 \mathrm{~nm})$ species are indicated. Isosbestic points are shown by curved arrows.
scan rate, $0.10 \mathrm{~V} / \mathrm{s}$. Cyclic voltammograms were obtained with a glassy-carbon electrode or a carbon microelectrode referenced to a $\mathrm{Ag} / \mathrm{AgCl}$ electrode standardized to 0.00 V vs SCE. Controlled-potential bulk electrolysis of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$ (3) was carried out using a platinum gauze electrode for a period of 1 h . The platinum gauze electrode and $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode were cleaned by scanning ($\pm \mathrm{Lim}=$ $0.0-1.5 \mathrm{~V}$) for 15 min in $10 \% \mathrm{HNO}_{3}(\mathrm{aq})$ solution prior to each electrolytic preparation of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$.

Kinetic Studies. Solutions of 4 used in the kinetic studies were prepared by dissolving TBAP $(0.10 \mathrm{M})$ and the porphyrin $\left(1.15 \times 10^{-4} \mathrm{M}\right)$ in 3.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After controlled-potential bulk electrolysis, a $200-\mu \mathrm{L}$ aliquot of the resultant $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})$ solution was placed in a $1.0-\mathrm{cm}$ cuvette and diluted with 1.8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A known concentration of alkene ($300-2800$-fold molar excess) was then added and the ensuing reaction monitored with time by repetitive scanning ($500-350 \mathrm{~nm}$) or by change in absorbance vs time at the $\lambda_{\max }(409 \mathrm{~nm})$ of ($\mathrm{Br}_{8} \mathrm{TPP}$) $\mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$.

Reactions for product analysis were carried out at higher $\left[\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})\right]\left(1.15 \times 10^{-4} \mathrm{M}\right)$ and higher [alkene] (same molar ratio range as kinetic studies) in $1.0-\mathrm{mm}$ cuvettes and monitored by repetitive spectral scanning ($500-350 \mathrm{~nm}$) to completion of the reaction. Product yields were determined by using the spent reaction solutions. The methods for GC and HPLC product analysis have been described previously. ${ }^{1}$

Results

All kinetic $\left(30^{\circ} \mathrm{C}\right)$ and electrochemical $\left(25^{\circ} \mathrm{C}\right)$ studies were carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The cyclic voltammogram (Figure 1) of oxo(meso-tetrakis(2,6-dibromophenyl)porphinato)chromium(V) $\left(\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X}) ; \mathrm{X}^{-}=\mathrm{ClO}_{4}^{-}\right)$shows chemical and electrochemical reversibility for the couple $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X}) /$ $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{IV}}(\mathrm{O})$ with $E_{1 / 2}(\mathrm{SCE})$ of 0.880 V with a glassy-carbon electrode (scan rate $100 \mathrm{mV} / \mathrm{s}$) and 0.850 V by use of a carbon microelectrode (scan rate $20 \mathrm{mV} / \mathrm{s}$). For bulk electrolytic con-trolled-potential oxidation of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$, to prepare

Figure 4. Plot of the observed pseudo-first-order rate constant $\left[k_{\text {obsd }}(\times\right.$ $\left.10^{-2} \mathrm{~s}^{-1}\right)$] for the disappearance of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})$ vs the concentrations of styrene, 4 -methylstyrene, and 4 -methoxystyrene ($30^{\circ} \mathrm{C}$).
$\left(\mathrm{Br}_{8} \mathrm{TPP}^{2}\right) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$, the potential was set at 1.04 V (vs SCE) (eq 1). The visible spectra of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$, $\left(\mathrm{Br}_{8} \mathrm{TPP}\right)$ -

$$
\begin{equation*}
\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{v}}(\mathrm{O}) \xrightarrow{-1 \mathrm{e}}\left(\mathrm{Br}_{8} \mathrm{TPP}^{2}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X}) \tag{1}
\end{equation*}
$$

$\mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$, and $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{111}(\mathrm{Cl})$ are shown in Figure 2. The Soret peaks are characterized as follows: $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})\left(\lambda_{\text {max }}\right.$ $\left.409 \mathrm{~nm} ; \epsilon=5.98 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right),\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{IV}}(\mathrm{O})\left(\lambda_{\text {max }} 431\right.$ $\mathrm{nm} ; \epsilon=1.2 \times 10^{5} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$), and ($\left.\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{111}(\mathrm{Cl})\left(\lambda_{\max } 449\right.$ $\mathrm{nm} ; \epsilon=1.62 \times 10^{5} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$).

Reactions of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ with 1,4-Diphenyl-1,3-Butadiene, 4-Methoxystyrene, 1,1-Diphenylethylene, 4-Methylstyrene, 2,3-Dimethyl-2-butene, cis-Stilbene, Styrene, 4-Acetoxystyrene, Cyclohexene, Norbornene, cis-Cyclooctene, 4-Cyanostyrene, cis-2-Pentene, Cyclopentene, 1-Hexene, and 1-Octene. Addition of norbornene ($6.0 \times 10^{-2} \mathrm{M}$) to a solution of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$ $\left(1.15 \times 10^{-5} \mathrm{M}\right)$ is followed (Figure 3) by a continual decrease in the Soret absorbance of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})(409 \mathrm{~nm})$, which gives way to the Soret absorbances of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\text {VV }}(\mathrm{O})(431 \mathrm{~nm})$ and $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 I I}(\mathrm{Cl})(451 \mathrm{~nm})$ with isosbestic points at 374 and 469 nm . Formation of ($\mathrm{Br}_{8} \mathrm{TPP}$) $\mathrm{Cr}^{111}(\mathrm{X})$ occurs on reaction of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})$ with alkene and $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 v}(\mathrm{O})$ arises on comproportionation of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{111}(\mathrm{Cl})$ with remaining $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})$ (Scheme I). Similar spectral changes are seen in the reaction of other alkenes with $\left(\mathrm{Br}_{8} \mathrm{TPP}^{2} \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})\right.$. As expected, with the more reactive alkenes there is formed less $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$ and more $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{I I I}(\mathrm{X})$.

Scheme I

$$
\begin{gather*}
(\mathrm{P}) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})+\text { alkene } \xrightarrow{k_{1}}(\mathrm{P}) \mathrm{Cr}^{\mathrm{III}}(\mathrm{X})+\text { epoxide } \\
(\mathrm{P}) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})+(\mathrm{P}) \mathrm{Cr}^{111}(\mathrm{X}) \underset{k_{3}}{\stackrel{k_{2}}{\rightleftarrows}}(\mathrm{P}) \mathrm{Cr}^{\mathrm{IV}}(\mathrm{O})+(\mathrm{P}) \mathrm{Cr}^{1 \vee}(\mathrm{X})_{2} \tag{3}
\end{gather*}
$$

$$
\begin{gather*}
(\mathrm{P}) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X}) \xrightarrow{k_{4}}(\mathrm{P}) \mathrm{Cr}^{\mathrm{IV}}(\mathrm{O})+\mathrm{X}^{-} \tag{4}\\
\mathrm{P}=\mathrm{Br}_{8} \mathrm{TPP} ; \mathrm{X}^{-}=\mathrm{Cl}^{-} \text {or } \mathrm{ClO}_{4}^{-}
\end{gather*}
$$

The disappearance of $\left(\mathrm{Br}_{8} \mathrm{TPP}^{2}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})$ with time followed the first-order rate law under the pseudo-first-order conditions of [alkene] $\left(3.0 \times 10^{-3}-6.0 \times 10^{-2} \mathrm{M}\right) \gg\left[\left(\mathrm{Br}_{8} \mathrm{TPP}^{2}\right) \mathrm{Cr}^{8}(\mathrm{O})(\mathrm{X})\right]$ ($1.15 \times 10^{-5} \mathrm{M}$). Plots of $k_{\text {obsd }}$ vs [alkene] for the reaction of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ with seven different alkenes are shown in Figures 4 and 5. Examination of the plots shows that $k_{\text {obsd }}$ is linearly dependent upon [alkene]. The slopes of such plots are equal to the second-order rate constants $\left(k_{1}\right)$ for reaction of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(X)$ with alkene. There was never observed a saturation of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ by alkene. Values of k_{1}, so determined, are as follows: $1.34 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for 4 -cyanostyrene; $2.32 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for cis-cyclooctene; $4.63 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for 4-acetoxystyrene; $7.83 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for cyclohexene; 8.57×10^{-2} $\mathrm{M}^{-1} \mathrm{~s}^{-1}$ for styrene; $6.38 \times 10^{-1} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for 4-methylstyrene; 3.52

Figure 5. Plot of the observed pseudo-first-order rate constant [$k_{\text {obsd }}(\times$ $10^{-3} \mathrm{~s}^{-1}$)] for the disappearance of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})$ vs the concentrations of 4-cyanostyrene, cis-cyclooctene, 4-acetoxystyrene, and cyclohexene ($30^{\circ} \mathrm{C}$).
$\mathrm{M}^{-1} \mathrm{~s}^{-1}$ for 4 -methoxystyrene. The spontaneous rate of disappearance of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})$ to give $\left(\mathrm{Br}_{8} \mathrm{TPP}^{2}\right) \mathrm{Cr}^{1 v}(\mathrm{O})$, in the absence of alkene, was independently monitored at 409 nm and found to be $2.4 \times 10^{-4} \mathrm{~s}^{-1}$. This value is, within the experimental error, equal to the intercepts of the lines of Figures 4 and 5 at [alkene] $=0.0 \mathrm{M}$.
In selected cases, the reactions were followed by repetitive spectral scanning ($500-350 \mathrm{~nm}$) and the time courses for the reactions computer simulated to Scheme I by monitoring the time-dependent changes in absorbance at the Soret maxima of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X}),\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{IV}^{\mathrm{V}}}(\mathrm{O})$, and $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{III}}(\mathrm{Cl})$. In the simulations the following considerations hold. The value of k_{1} is dependent upon the alkene. The values of k_{2} and k_{3} are the minimal values that provide good computer fits. The ratio k_{2} / k_{3} is critical, but the true rate constants may be much greater than the minimal values employed. Thus, though the spectral data shown in Figure 6 were simulated with $k_{2}=5.0 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $k_{3}=50 \mathrm{M}^{-1} \mathrm{~s}^{-1}$, a change in these constants to $k_{2}=10^{8} \mathrm{M}^{-1}$ s^{-1} and $k_{3}=10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ provides an equally good fit and results in only a 2.8% increase in the predicted yield of epoxide. The rate constant k_{4} pertains to the decomposition of ($\mathrm{Br}_{8} \mathrm{TPP}$) $\mathrm{Cr}^{2}{ }^{v}$ $(O)(X)$ in the absence of alkene, and its value has been determined independently ($2.4 \times 10^{-4} \mathrm{~s}^{-1}$). It has been shown in this and a previous investigation ${ }^{1}$ that the second-order rate constants for the reaction of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})$ with alkenes, calculated from the rate of disappearance of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})$ and by simulation of the time dependence of the absorbances of (Br_{8} TPP). $\mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X}),\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$, and $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{I I \mathrm{l}}(\mathrm{X})$, are, within experimental error, the same.

In Figure 6 are shown the spectral changes that accompany the reaction of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})\left(1.15 \times 10^{-5} \mathrm{M}\right)$ with $1,1-$ diphenylethylene ($2.24 \times 10^{-3} \mathrm{M}$). The points of Figure 6 are experimental and the lines have been computer simulated to Scheme I by use of the following constants: $k_{1}=1.2 \mathrm{M}^{-1} \mathrm{~s}^{-1} ; k_{2}$ $=5.0 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1} ; k_{3}=5.0 \times 10^{1} \mathrm{M}^{-1} \mathrm{~s}^{-1} ; k_{4}=2.3 \times 10^{-4} \mathrm{~s}^{-1}$. Product analysis (HPLC) indicated the presence of 1,1 -di-phenyl-1,2-epoxyethane in 19% and 1,1-diphenylacetaldehyde in 47% yield based on $\left[\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})\right]$ employed (total product yield of 66%). The yield of products predicted by computer simulation was 63%.
Kinetic analysis of the reaction of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})(1.15$ $\left.\times 10^{-4} \mathrm{M}\right)$ with 1 -octene $\left(4.2 \times 10^{-3} \mathrm{M}\right)$ was carried out in $1.0-\mathrm{mm}$ cuvettes and monitored by repetitive scanning ($500-350 \mathrm{~nm}$). Computer simulation of the time dependence of absorbances at the position of the Soret maxima of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X}),\left(\mathrm{Br}_{8}-\right.$ $\mathrm{TPP}) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$, and $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{111}(\mathrm{Cl})$ according to Scheme I are shown in Figure 7. Fits to the kinetic points were obtained when $k_{1}=3.2 \times 10^{-5} \mathrm{M}^{-1} \mathrm{~s}^{-1}, k_{2}=5.0 \times 10^{2} \mathrm{M}^{-1} \mathrm{~s}^{-1}, k_{3}=5.0 \times 10^{1}$ $\mathrm{M}^{-1} \mathrm{~s}^{-1}$, and $k_{4}=2.2 \times 10^{-4} \mathrm{~s}^{-1}$. The rate constants are much the same when determined by simulation using a 10 -fold lower concentration of both $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})$ and 1-octene (i.e., k_{1}

Figure 6. Computer simulation of the reaction of $\left(\mathrm{Br}_{8} \mathrm{TPP}^{2}\right) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$ with 1,1 -diphenylethylene at $30^{\circ} \mathrm{C}$. (A) Absorbance at the $\lambda_{\text {max }}$ (409 $\mathrm{nm})$ of $\left(\mathrm{Br}_{8} \mathrm{TPP}^{2}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})$; (B) absorbance at the $\lambda_{\text {max }}(431 \mathrm{~nm})$ of ($\left.\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$; (C) absorbance at the $\lambda_{\text {max }}(451 \mathrm{~nm})$ of ($\mathrm{Br}_{8} \mathrm{TPP}$)$\mathrm{Cr}^{111}(\mathrm{Cl})$. The points are experimental and the lines are computer generated. For computer simulation account was taken of the extinction coefficients of the species $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X}),\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$, and $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{111}(\mathrm{Cl})$ at each wavelength. The spectrum of the species ($\left.\mathrm{Br}_{\mathrm{g}} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})$ was taken prior to the addition of the alkene to assure the absence of more than a few percent of ($\mathrm{Br}_{8} \mathrm{TPP}$) $\mathrm{Cr}^{\text {rV }}(\mathrm{O})$.
$=3.2 \times 10^{-5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$). Product analysis (GC) indicated only the presence of 1,2 -epoxyoctane in 3.3% yield based on [($\left.\mathrm{Br}_{8} \mathrm{TPP}\right)$ $\left.\mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})\right]$ employed. The yield of 1,2 -epoxyoctane predicted by the computer simulation of the absorbance data was 2.8%.

Simulations of the time courses to Scheme I for the reaction of norbornene, styrene, and cis-stilbene were also carried out under conditions as those described for 1,1 -diphenylethylene and 1 octene. Values of k_{1} were determined as $7.0 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for norbornene, $8.9 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for styrene, and $3.98 \times 10^{-1} \mathrm{M}^{-1}$ s^{-1} for cis-stilbene. By simulation, the products of reaction of norbornene with $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$ are predicted at 64% yield. By GC, exo-norbornene oxide is obtained in 63% yield. No endo isomer was detected. With styrene the product yield is predicted to be 61%. There was obtained (HPLC) 59% styrene oxide and 6% phenylacetaldehyde (65% total product yield). With cisstilbene the product yield is predicted to be 68%. There was obtained (HPLC) 21% cis-stilbene oxide and $52 \% \quad 1,1$-diphenylacetaldehyde (73% total product yield). Control experiments established that in the presence of $\left(\mathrm{Br}_{8} \mathrm{TPP}^{2}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ the epoxide of cis-stilbene provides 1,1 -diphenylacetaldehyde. Such a rearrangement has been seen (and discussed ${ }^{1}$) in the reaction of cis-stilbene oxide with oxo(meso-tetrakis(2,4,6-trimethylphenyl)porphinato)chromium (V).

Other second-order rate constants for $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ epoxidations $\left(k_{1}\right)$ obtained by simulations of the time dependence of the concentrations of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X}),\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$, $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\text {rll }}(\mathrm{Cl})$ are as follows: $1.2 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for 1-hexene; $3.98 \times 10^{-1} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for cyclopentene; $3.55 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for

Figure 7. Computer simulation of the reaction of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ with 1 -octene at $30^{\circ} \mathrm{C}$. (A) Absorbance at the $\lambda_{\max }$ (409 nm) of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(X)$; (B) absorbance at the $\lambda_{\max }(43 \mathrm{lnm})$ of ($\mathrm{Br}_{8} \mathrm{TP}-$ $\mathrm{P}) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$; (C) absorbance at the $\lambda_{\text {max }}(451 \mathrm{~nm})$ of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{111}(\mathrm{Cl})$. The points are experimental and the lines are computer generated. For computer simulation account was taken of the extinction coefficients of the species $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X}),\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{IV}}(\mathrm{O})$, and $\left(\mathrm{Br}_{8} \mathrm{TPP}\right)$ $\mathrm{Cr}^{111}(\mathrm{Cl})$ at each wavelength. The spectrum of the species $\left(\mathrm{Br}_{8} \mathrm{TPP}\right)-$ $\mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$ was taken prior to the addition of the alkene to assure the absence of more than a few percent of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 V}(\mathrm{O})$.
cis-2-pentene; $2.1 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for cis-cyclooctene (compared to $2.32 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ obtained by fitting the first-order rate law to the disappearance of $\left.\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})\right) ; 9.5 \times 10^{-1} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for 2,3-dimethyl-2-butene; and $1.7 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for 1,4-diphenyl-1,3butadiene.

Discussion

The second-order rate constants for the epoxidation of 16 alkenes by oxo(meso-tetrakis(2,6-dibromophenyl)porphinato)chromium(V) $\left(\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})\right)$ (eq 2) have been determined under stoichiometric conditions (see Results). The ($\mathrm{Br}_{8} \mathrm{TPP}$) $\mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})$ reagent was prepared by electrochemical oxidation of the stable $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{IV}}(\mathrm{O})(\mathrm{eq} 1)$. The electrochemical potential for the couple ($\left.\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X}) /\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$ has been determined by two methods to be $0.865 \pm 0.015 \mathrm{~V}$ (SCE). In a previous study the electrochemical potentials for the following couples were determined: oxo(meso-tetraphenylporphinato)chromium(V)/ oxo-(meso-tetraphenylporphinato)chromium(IV), ((TPP) Cr^{V} (O)(X)/(TPP) $\mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$); oxo(meso-tetrakis(2,4,6-trimethylphenyl) porphinato)chromium(V)/oxo(meso-tetrakis (2,4,6-trimethylphenyl)porphinato)chromium(IV), ($\left(\mathrm{Me}_{12} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})$ (X) /($\mathrm{Me}_{12} \mathrm{TPP}$) $\mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$); oxo(meso-tetrakis(2,6-dichlorophenyl) porphinato)chromium(V)/oxo(meso-tetrakis(2,6-dichlorophenyl)porphinato) chromium(IV), (($\left.\mathrm{Cl}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})$ (X) $/\left(\mathrm{Cl}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 V}(\mathrm{O})$); oxo(meso-tetrakis(2,6-difluorophenyl)porphinato)chromium (V)/oxo(meso-tetrakis (2,6-difluorophenyl)porphinato)chromium(IV), ($\left(\mathrm{F}_{8} \mathrm{TPP}^{2} \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X}) /\right.$ $\left(\mathrm{F}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{IV}}(\mathrm{O})$). In Table I are listed literature values for the

Table I. Literature Values of the $E_{1 / 2}(\mathrm{~V}, \mathrm{SCE})$ for One-Electron Oxidation of Alkenes ${ }^{a}$

alkene	$E_{1 / 2}$	method	ref
1,4-diphenyl-1,3-butadiene	1.14	$*$	5
4-methoxystyrene	1.15	$*$	6
1,1-diphenylethylene	1.22	+	7
4-methylstyrene	1.38	$*$	6
2,3-dimethyl-2-butene	1.44	+	8
cis-stilbene	1.54	$*$	9
styrene	1.65	+	4
4-acetoxystyrene	1.76	$*$	6
cyclohexene	1.81	+	10
norbornene	1.90	+	11
cis-cyclooctene	2.03	+	12
4-cyanostyrene	2.05	$*$	6
cis-2-pentene	2.07	+	8
cyclopentene	2.19	$\mathbf{+}$	13
1-hexene	2.44	$\mathbf{+}$	8
1-octene	2.80	$*$	14

${ }^{a}$ Carried out in acetonitrile (*), ${ }^{3}$ extrapolated from gas-phase ionization potentials to acetonitrile $(+)$ by the general method of ref 4.

Figure 8. Plot of the log of the second-order rate constant $\left(k_{1}\right)$ for reaction of a series of five (Porph) $\mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$ species with norbornene vs the $E_{1 / 2}$ for the couple (Porph) $\mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X}) /($ Porph $) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})$.
le oxidation potentials (eq 7b) for the alkenes employed in this study.
For the epoxidation of norbornene, the $\log k_{1}$ and $E_{1 / 2}$ values of Figure 8 include the constants determined in this study with ($\mathrm{Br}_{8} \mathrm{TPP}$) $\mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})$ as well as constants determined in a previous study ${ }^{1}$ using (TPP) $\mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$, ($\mathrm{Me}_{12} \mathrm{TPP}^{2} \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$, $\left(\mathrm{Cl}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{2}(\mathrm{O})(\mathrm{X})$, and $\left(\mathrm{F}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})$. The linear correlation line of Figure 8 is given by eq 5 . A linear correlation

$$
\begin{equation*}
\log k_{1}=9.08 E_{1 / 2}-8.76 \tag{5}
\end{equation*}
$$

between the \log of the second-order rate constant $\left(k_{1}\right)$ for the reaction of $\left.\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})\right)$ with the various alkenes and the alkene $E_{1 / 2}$ values is shown in Figure 9 . The values of k_{1} range from $3.2 \times 10^{-5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ to $3.5 \mathrm{M}^{-1} \mathrm{~s}^{-1}$, while the alkene $E_{1 / 2}$ values range from 1.14 to 2.80 V . The correlation line of Figure 9 is given by eq 6 .

$$
\begin{equation*}
\log k_{1}=-2.99 E_{1 / 2}+4.02 \tag{6}
\end{equation*}
$$

The interpretation of the linear free-energy correlations of \log k_{1} to $E_{1 / 2}$ values (eq 5 and 6) as evidence for the intermediacy of ($\operatorname{Porph}) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})+$ alkene-derived π cation radical leads to eq 7. The emf values for 1 e oxidations of various alkenes by

$$
\begin{gather*}
\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})+\mathrm{e} \rightarrow\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{IV}}(\mathrm{O})(\mathrm{X}) \quad P_{1} \tag{7a}\\
\text { alkene } \tag{7b}\\
\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})+\mathrm{e} \rightarrow \text { alkene } P_{2} \\
\quad \underset{\text { alkene }}{ }\left(\mathrm{Br}_{8} \mathrm{PPP}_{2}\right) \mathrm{Cr}^{\text {rv }}(\mathrm{O})(\mathrm{X})+\text { alkene }{ }^{++} \tag{7c}
\end{gather*}
$$

Figure 9. Plot of the \log of the second-order rate constant $\left(k_{1}\right)$ for reaction of a series of 16 alkenes with $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ vs the $E_{1 / 2}$ for le oxidation of the alkenes.

Figure 10. A cartoon of the reaction coordinate for the hypothetical le oxidation of 1 -octene by $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$. The picture shows that the experimentally determined standard free energy $\left(\Delta G^{\circ}\right)$ for the formation of alkene-derived π cation radical + chromium(IV)-oxo porphyrin exceeds the free energy of formation of the transition state $\left(\Delta G^{\mathrm{a}}\right)$ by ca. $21 \mathrm{kcal} / \mathrm{mol}$.

Figure 11. A cartoon of the reaction coordinate for the hypothetical le oxidation of 1,4 -diphenyl-1,3-butadiene by $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{V}(\mathrm{O})(\mathrm{X})$. The picture shows that the experimentally determined standard free energy (ΔG°) for the formation of alkene-derived π cation radical + chromi-um(IV)-oxo porphyrin is less than the free energy of formation of the transition state (ΔG^{a}) by ca. $11 \mathrm{kcal} / \mathrm{mol}$.
$\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})(\mathrm{eq} 7 \mathrm{c})$ are given as emf $=P_{1}-P_{2}$ (eq $7 \mathrm{a}, \mathrm{b}$) and the standard free energies $\left(\Delta G^{\circ}\right)$ for the le-transfer reaction (eq 7 c) were calculated from the relationship $\Delta G^{\circ}=(n=1)$. $(F)(e m f)$. The free energies of activation for epoxidation of alkenes by $\left(\mathrm{Br}_{8}\right.$ TPP $) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})$ were calculated by use of the Eyring equation ${ }^{15}\left(\right.$ at $30^{\circ} \mathrm{C}, \Delta G^{\text {a }}=-17.74+1.386\left(\log k_{1}\right)$). The dashed

Figure 12. Plot of the log of the second-order rate constants $\left(k_{1}\right)$ for reaction of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ with a series of five substituted styrenes vs the substituent constants $\sigma^{+}\left(30^{\circ} \mathrm{C}\right)$.
line of Figure 9 separates those alkenes for which $\Delta G^{\mathrm{a}}<\Delta G^{\circ}$ and those for which $\Delta G^{a}>\Delta G^{\circ}$. The standard free energy for the formation of the putatitve $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{IV}}(\mathrm{O})+$ alkene π -cation-radical intermediates is greater than the free energy of activation for epoxidation for about half of the alkenes investigated. Cartoons of the reaction coordinates for epoxidation of 1-octene ($\Delta G^{\mathrm{a}}<\Delta G^{\circ}$) and 1,4-diphenyl-1,3-butadiene ($\Delta G^{\mathrm{a}}>\Delta G^{\circ}$) are shown in Figures 10 and 11, respectively. In the construction of the reaction coordinate cartoons a solvent-caged pair of the species $/\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})(\mathrm{X})+$ alkene π cation radical/ is drawn as though it were intermediate to epoxidation and at a free-energy content approaching the transition state for the rate-determining step. Figure 10 represents an extreme example for which ΔG° exceeds $\Delta G^{\text {a }}$ by $20.7 \mathrm{kcal} / \mathrm{mol}$. An immediate concern is the plausibility of an intermediate solvent-caged $/\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\text {IV }}$. (O) $(\mathrm{X})+$ alkene π cation radical/ species, which must be stabilized, relative to the solvent-separated pair, by up to $21+Y$ $\mathrm{kcal} / \mathrm{mol}$ (where $Y=\Delta G^{\mathrm{a}}$ for reversion of solvent-caged intermediates to solvent-separated alkene $+\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})$). The possibility of a change in mechanism for the epoxidation from one involving intermediate formation of solvent-caged $/\left(\mathrm{Br}_{8}\right.$ TPP $)$ $\left.\mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})\right)(\mathrm{X})+$ alkene π cation radical/pair (when $\Delta G^{\mathrm{a}}>\Delta G^{\circ}$) to a concerted reaction or one involving the intermediacy of a covalent species (when $\Delta G^{\mathrm{a}}<\Delta G^{\circ}$) does not seem likely since there is no break in the plot of $\log k_{1}$ vs $E_{1 / 2}$. It is concluded that a mechanism involving the formation of an alkene-derived π cation radical can not be correct.

In the interpretation of linear free energy plots of $\log k_{1}$ vs $E_{1 / 2}$ one might assume that the relationship is direct or, alternatively, that $E_{1 / 2}$ and $\log k_{1}$ are a function of a common parameter. Figure 12 shows that there is a linear free-energy relationship of $\log k_{1}$ and σ^{+}for the epoxidation of the substituted styrenes with (Br_{8} TPP) $\mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})$. It is known ${ }^{16}$ that $E_{1 / 2}$ for le oxidations and σ^{+}are linearly related to the vertical ionization potential (IP). There are two possibilities: (i) all electrophilic reactions that correlate with σ^{+}are in fact rate-controlled le-transfer reactions; or (ii) both σ^{+}and IP (or $E_{1 / 2}$) are dependent upon a third parameter, which is electron availability of the substrate and ability to stabilize a positive charge in the transition state

For a reaction that proceeds via an initial electron transfer three situations are possible: (i) at one extreme the diffusion together of the reactants is rate limiting and $\log k_{1}$ for le transfer shows no dependence on $\Delta E_{1 / 2}$ (slope $=0$); (ii) in the other extreme le transfer is so endothermic that $\log k_{1}$ is directly proportional to the $\Delta E_{1 / 2}$ for the overall le transfer (slope $=-16.6 \mathrm{~V}^{-1}$); and (iii) the intermediate region where $\log k_{1}$ for rate-limiting le transfer is dependent on $\Delta E_{1 / 2}$ with the slope dependent upon the degree

[^2]Scheme II

of electron transfer in the transition state, changing from zero to $-16.6 \mathrm{~V}^{-1} .{ }^{17}$ When our data are plotted in the form of a modified Bronsted plot (eq 6), a slope of $-2.99 \mathrm{~V}^{-1}$ is obtained. In a conventional Brønsted plot ($\log k_{1}$ vs $\log K_{\mathrm{eq}}$), this corresponds to Brønsted $\alpha=0.18$. If le transfer is involved in the reaction of (Porph) $\mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ species with alkenes, the transition state must be early such that the electron has undergone only a partial transfer. Such a situation would be equivalent to rate-determining formation of a charge-transfer complex. Only a late transition state would be in accord with the formation of a solvent-caged $/\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 V}(\mathrm{O})(\mathrm{X})+$ alkene π cation radical/ pair. Again, a single consistent mechanism involving a caged $/\left(\mathrm{Br}_{8} \mathrm{TPP}\right)$ $\mathrm{Cr}^{\mathrm{IV}}(\mathrm{O})(\mathrm{X})+$ alkene π cation radical/ pair may be dismissed. In contrast, the rate-limiting formation of a complex with a small degree of charge transfer would appear to be feasible.

The difference in slopes of the linear free-energy relationships of $\log k_{1}$ vs $\log K_{\text {eq }}$ when (Porph) $\mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ is varied (eq 5), and when alkene is varied (eq 6), indicates the presence of perpendicular (Thornton) contribution to the overall slope. In the first approximation ${ }^{18 a}$ the overall slope (α) is given by eq 8 , where the

$$
\begin{equation*}
\alpha=\chi \pm 0.5(\tau-1) \tag{8}
\end{equation*}
$$

first term (χ) incorporates the parallel (Leffler-Hammond ${ }^{18 \mathrm{~b}, \mathrm{c}}$) contribution, and the second term $(0.5(\tau-1))$ is the perpendicular (Thornton ${ }^{18 \mathrm{~d}}$) contribution. The term χ represents the progress of the reaction along the reaction coordinate and τ is the measure of the "tightness" of the transition state. The χ term has a positive sign when the (electron) acceptor is varied and a negative sign when the (electron) donor is varied in a homologous series of reactions. The full physical significance of these terms is discussed elsewhere. ${ }^{18 a}$ With two slopes available, $\alpha=0.18$ when the alkene (donor) is varied, and $\alpha=0.55$ when porphyrin (acceptor) is varied, two equations for α with two unknowns (χ and τ) were solved. The values obtained were $\chi=0.37$ and $\tau=0.63$. Presuming a le-transfer mechanism and the validity of eq 8 for such purpose, the transition state is located ca. 37% along the reaction coordinate for the formation of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{1 \mathrm{~V}}(\mathrm{O})(\mathrm{X})+$ alkene π cation radical, and it is moderately "loose". This approximation of the structure of the transition state is not consistent with a full electron transfer but is reasonable for rate-limiting formation of a charge-transfer complex between alkene and ($\mathrm{Br}_{8} \mathrm{TPP}$) Cr^{\vee} $(\mathrm{O})(\mathrm{X})$. An initially formed charge-transfer complex could collapse to give epoxide $+\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{III}}(\mathrm{X})$ in one or more rapid sequential or parallel steps (Scheme II; where Porph = porphyrin). Pathway C can only be of importance for the alkenes of low oxidation potentials (alkenes above the dashed line in Figure 9).

[^3]Cationic intermediates ($\mathrm{M}-\mathrm{O}-\mathrm{C}-\mathrm{C}^{+}$) have been proposed, on numerous occasions, ${ }^{19}$ in the epoxidation of alkenes by hypervalent oxo-metallo porphyrins in order to explain the presence of rearranged products. By use of radical-trapping experiments ${ }^{20}$ it was established that intermediates with radical character are unlikely. The proposition has been made that the most likely candidate is a $\mathrm{M}-\mathrm{O}-\mathrm{C}-\mathrm{C}^{+}$species with the positive charge partially stabilized by interaction with the electron cloud on porphyrin nitrogens. ${ }^{19}$ Consider the linear free-energy relationship of $\log k_{1}$ with σ^{+}. From Figure 12 the value of ρ^{+}for the epoxidation of the substituted styrenes by $\left(\mathrm{Br}_{8} \mathrm{TPP}^{2}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ is -1.9. However, the reported ρ^{+}values for electrophilic additions to substituted styrenes, which involve the formation of carbocation intermediates are much greater (i.e., -3.58 (hydration), ${ }^{21}$ and -4.8 (bromination) ${ }^{22}$). This indicates that if an electrophilic mechanism were operative, an early transition state is necessary to accommodate the observed slope.

A third mechanism that should be considered is a concerted insertion of oxygen into the alkene double bond. A plot of the log of the second-order rate constants for the epoxidation of 15 alkenes by meta-chloroperbenzoic acid vs $E_{1 / 2}$ for the alkenes possesses a slope of $-2.4 \mathrm{~V}^{-1}$. ${ }^{23}$ (Figure not shown but available on request.) This value may be compared to the slope ($-3 \mathrm{~V}^{-1}$) of the plot of $\log k_{1}$ vs $E_{1 / 2}$ for the epoxidation of alkenes by $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{v}}$ $(\mathrm{O})(\mathrm{X})$. It is obvious that epoxidation of alkenes by both meta-chloroperbenzoic acid and $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{V}}(\mathrm{O})(\mathrm{X})$ is equally dependent upon the electron availability of the alkene. A nonsymmetrical transition state for peracid epoxidations and carbene insertion into $\mathrm{C}-\mathrm{C}$ double bonds has been proposed wherein one carbon carries a partial positive charge. ${ }^{24}$ To continue, the following values of ρ^{+}have been published for electrophilic reactions which are believed not to involve carbocationic intermediates: $-0.62\left(: \mathrm{CCl}_{2}\right.$ insertion into the double bond of substituted styrenes), ${ }^{25}-1.61$ ($: \mathrm{CH}_{2}$ insertion into the double bond of substituted styrenes using $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ZnCH}_{2} \mathrm{I}$), ${ }^{26}$ and -1.2 (epoxidation of substituted stilbenes with perbenzoic acid). ${ }^{27}$ These values may be compared to the ρ^{+}value (-1.9) for epoxidation of substituted styrenes by $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{v}(\mathrm{O})(\mathrm{X})$. The only other ρ^{+} reported for epoxidation of substituted styrenes, determined by bimolecular reaction of a hypervalent metallo-oxo porphyrin species with alkene, is that for the reaction of substituted styrenes with oxo(meso-tetrakis(2,4,6-trimethylphenyl)porphinato- π-cat-ion-radical)iron(IV). The reported ρ^{+}is $-1.9 .{ }^{28}$ Kochi and
(19) Castellino, A. J.; Bruice, T. C. J. Am. Chem. Soc. 1988, 110, 158.
(20) Castellino, A. J.; Bruice, T. C. J. Am. Chem. Soc. 1988, $110,1313$.
(21) Schubert, W. M.; Keefe, J. R. J. Am. Chem. Soc. 1972, 94, 559.
(22) Yates, K.; McDonald, R. S.; Shapiro, S. A. J. Org. Chem. 1973, 38, 2461.
(23) Shellhamer, D. F. Ph.D. Dissertation, University of California at Santa Barbara, 1974; pp 168-171.
(24) (a) Hanzlik, R. P.; Shearer, G. O. J. Am. Chem. Soc. 1975, 97, 5231.
(b) Plesnicar, B.; Tasevski, M.; Azmau, A. J. Am. Chem. Soc. 1978, 100, 743. (25) Seyferth, D.; Mui, J. Y.-P.; Damrauer, R. J. Am. Chem. Soc. 1968, 90, 6182.
(26) Nishimura, J.; Furukawa, J.; Kawabata, N.; Kitayama, M. Tetrahedron 1971, 27, 1799.
(27) Ogata, Y.; Tabushi, I. J. Am. Chem. Soc. 1961, 83, 3440.
(28) Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1986, 108, 517.
co-workers ${ }^{29}$ have reported the second-order rate constants for epoxidation of a number of alkenes using substituted oxo(salen)chromium(V) complexes as catalysts. By use of Kochi's data for reaction of $\operatorname{bis}\left(5,5^{\prime}\right.$-dichloro)-($8,8,8^{\prime}, 8^{\prime}$-tetramethylsalen)chromium (V)oxo with alkenes it is found that a plot of $\log k_{1}$ vs $E_{1 / 2}$ of alkenes gives a good linear free-energy relationship with slope of $-1.83 \mathrm{~V}^{-1}$. Using the data for a series of substituted styrenes $\rho^{+}=-1.44$. The similarity in the values of ρ^{+}for chromium (V)-oxo species epoxidations and known concerted reactions should be noted.

If such a concerted mechanism were operative, it would be required that rearrangement products attributable to the formation of cation intermediates etc. arise from reactions that are parallel to and competitive with epoxidation.

The rate constant k_{1} pertains to the second-order reaction of $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\vee}(\mathrm{O})(\mathrm{X})$ with alkene. The second-order rate constant for epoxidation of alkene ($k_{\text {ep }}$) is equal to k_{1} for the majority of alkenes investigated which do not provide appreciable yields of rearranged etc. products. For the alkenes that provide considerable yields of rearranged products (styrene, cis-stilbene, and 1,1-diphenylethylene) $k_{1}=k_{\mathrm{ep}}+k_{\mathrm{re}}$. Thus, it is required for the linear relationship of $\log k_{1}$ and $E_{1 / 2}$ (Figure 9) that the rate constants of epoxidation, and reactions to give rearrangement, exhibit the same dependency upon $E_{1 / 2}$. The ρ^{+}values (-3.6 to -4.8) for reactions that provide carbocation in the rate-limiting step differ greatly from the ρ^{+}value derived from k_{1} values. It would appear unlikely, therefore, that the reaction of $\left(\mathrm{Br}_{8} \mathrm{TPP}^{2}\right) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$ with alkenes can be characterized as rate-limiting oxygen insertion, to provide epoxide, in competition with carbocation intermediate formation. Thus, Scheme II would appear to represent the most logical mechanism. It should be understood that these conclusions have been reached from experiments carried out with $\left(\mathrm{Me}_{12} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$ and $\left(\mathrm{Br}_{8} \mathrm{TPP}\right) \mathrm{Cr}^{\mathrm{v}}(\mathrm{O})(\mathrm{X})$; however, the similarities of ρ^{+}values obtained in this study and those reported for hypervalent oxo-manganese ${ }^{30}$ and oxo-iron ${ }^{28,31}$ porphyrins suggest that they may share a common mechanism. The mechanism of Scheme II provides a suitable rationalization of the experimental results of Traylor and co-workers. ${ }^{32}$ They proposed epoxidation with (${ }^{\bullet}$ Porph $) \mathrm{Fe}^{1 \mathrm{~V}}(\mathrm{O})(\mathrm{X})$ to proceed via rate-determining formation of iron(IV)-oxo porphyrin + alkene-derived π cation radical. Thus, the observed rearrangements of hexamethyl Dewar benzene and $1,4,4 a, 5,8,8 \mathrm{a}$-hexahydro-1,4,5,8-endo,endo-dimethanonaphthalene are adequately explained by reaction path C of Scheme II as is their purported linear dependence of $\log k_{\text {rate }}$ on $E_{1 / 2}$.

Acknowledgment. This work was supported by grants from the National Institutes of Health and the National Science Foundation. We wish to thank Professors Maurice Kreevoy and Ralph Pearson for helpful suggestions.
(29) Samsel, E. G.; Srinivasan, K.; Kochi, J. K. J. Am. Chem. Soc. 1985, 107, 7606 .
(30) Bartolini, O.; Meunier, B. J. Chem. Soc., Perkin Trans. 2 1984, 1967
(31) Lindsay Smith, J. R.; Sleath, P. R. J. Chem. Soc., Perkin Trans. 2 1982, 1009.
(32) Traylor, T. G.; Mikszatal, A. R. J. Am. Chem. Soc. 1987, 109, 2770.

[^0]: (1) Garrison, J. M.; Bruice, T. C. J. Am. Chem. Soc. 1989, I/l, 191.

[^1]: (2) Ostovič, D.; Bruice, T. C. J. Am. Chem. Soc. 1988, 110, 6906.
 (3) (a) Pysh, E. S.; Yang, N. C. J. Am. Chem. Soc. 1963, 85, 2124. (b) Loveland, J. W.; Dimeler, G. R. Anal. Chem. 1961, 33, 1196.
 (4) Neikman, W. C.; Dimeler, G. R.; Desmond, M. M. J. Electrochem. Soc. 1964, 111, 1190.
 (5) Katz, M.; Wendt, H. Electrochim. Acta 1976, 98, 887.
 (6) Kojima, M.; Sakuragi, H.; Tokumaru, K. Bull. Chem. Soc. Jpn. 1985, 58, 521 .
 (7) Herndon, W. C. J. Am. Chem. Soc. 1976, 98, 887.
 (8) Masclet, P.; Grosjean, D.; Mouvier, G.; Dubois, J. J. Electron Spectrosc. Relat. Phenom. 1973, 2, 225.
 (9) Catalano, C. E.; Ortiz de Montellano, P. R. Biochemistry 1987, 26, 8373.
 (10) Joboury, A; Turner, D. W. J. Chem. Phys. 1964, 2, 4434.
 (11) Bodor, N.; Dewar, M. J. S.; Worley, S. D. J. Am. Chem. Soc. 1970, 92, 19.
 (12) Batich, C.; Bischof, P.: Heilbronner, E. J. Electron Spectrosc. Relat. Phenom. 1972/73, l, 333.
 (13) Wielesek, R. A.; Koenig, T. Tetrahedron Lett. 1974, $28,2429$.
 (14) Shono, T. Electroorganic Chemistry as a New Tool in Organic Synthesis; Springer-Verlag: New York, 1984; 99.

[^2]: (15) Eyring, H. J. Chem. Phys. 1935, 3, 107.
 (16) Arai, T.; Sakuragi, H.; Tokumaru, K.; Kobayashi, T. Denki Kagaku 1982, 50, 201.

[^3]: (17) (a) Rehm, D.; Weller, A.; Isr. J. Chem. 1970, 8, 259. (b) Andrieux, C. P.; Blocman, C.; Dumas-Bouchiat, J.-M.; Saveant, J.-M. J. Am. Chem. Soc. 1979, 101, 3431
 (18) (a) Kreevoy, M. M.; Lee, I.-S. H. J. Am. Chem. Soc. 1984, 106, 2550. (b) Leffler, J. E. Science (Washington, D.C.) 1953, 117, 340. (c) Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334. (d) Thornton, E. R. J. Am. Chem Soc. 1967, 89, 2915.

